KRZYWE SPEKTROFOTOMETRYCZNE NIEKTÓRYCH GLEB POLSKI

Zagadnienie to można rozważać bądź jako współczynniki jasności spektralnej r /pomiar w stosunku do wzorca idealnie rozpraszającego światło/ bądź jako współczynniki odbicia /procent energii odbitej w stosunku do ilości energii idącej od słońca/ - w określonych przedziałach długości fali. W obu przypadkach chodzi o tak zwaną "odpowiedź spektralną" poszczególnych obiektów.

Badania w tym kierunku są tak stare, jak rozważania teoretyczne nad metodologią fotointerpretacji. Poznanie odpowiedzi spektralnej obiektów miało na celu głównie:

1. Zebranie informacji, w jakich przedziałach spektrum różnice odpowiedzi spektralnej badanych obiektów są największe, aby wybrać receptory energii najbardziej czułe w tych właśnie przedziałach,

2. Ułatwienie identyfikacji obiektów i automatyzację ich rozpoznawania. Jako następny krok automatyzacji rozpoznawania uznać można identyfikację obiektów bezpośrednio na podstawie ich charakterystyki spektralnej z pominięciem etapu wizualizacji. Badania prowadzone były:

a/ w warunkach laboratoryjnych na sztucznie wypreparowanych próbkach,
b/ w polu z wysokości od 1 do paru metrów na statywach, platformach lub specjalnie skonstruowanych suwnicach, z pokładów aparatury latających.

Wielu specjalistów zaleca, aby równocześnie, w tym samym czasie, dla tego samego obiektu mierzyć "odpowiedź spektralną" w polu, w laboratorium i z wysokości na jakiej jest wykonywana rejestracja.

W dotychczasowych nielicznych takich całkowitych pomiarach uzyskiwano duże rozbieżności i słyszało się poglądy o całkowitej nie-
przydatności pomiarów laboratoryjnych, podczas których pomija się wpływ czynników atmosferycznych. Te rozbieżności, jak też sezonowa zmienność charakterystyki spektralnej obiektów oraz podobne odpowiedzi spektralne dla różnych obiektów sprawiły, że osiągło zainteresowanie pomiarami krzywych spektrofotometrycznych. Dla sprawiedliwości należy dodać, że nagromadzono do tego czasu dużo wyników charakterystycznych roślinność, gleby, skały, itp. /w odniesieniu do gleb za podsumowanie tego etapu można uważać pracę Tołczelnikowa "Criticzeskie swojstwa landszafta/.

Rozszerzenie zakresu spektrum wykorzystywanego w teledetekcji, niefotograficzne metody rejestracji energii, automatyzacja opracowań wyników rejestracji kazały wrócić w innym już aspekcie do pozawania odpowiedzi spektralnej poszczególnych obiektów.

W obecnych badaniach w porównaniu z poprzednimi wywodzącymi się z teorii barwy i ograniczonymi do promieniowania widzialnego oraz bliskiej podczerwieni charakterystyczne jest: a/ rozszerzenie zakresu długości fali, b/ rozszerzenie punktów badań równoczesnych na bardzo dużych obszarach.

Mamy więc przejście od spektrofotometrów do spektroradiometrów pokrywających cały zakres spektrum stosowanego w teledetekcji.

Mamy też projekt równoczesnego wykonania pomiarów odpowiedzi spektralnej gleb i gruntów w wielu punktach kuli ziemskiej. To ostatnio w ścisłym nawiązaniu do pełniejszego wykorzystania rejestracji z satelity ERTS. Projekt ten powstał w ramach grupy roboczej Remote Sensing Soil Surveys utworzonej przy Międzynarodowym Towarzystwie Gło- boznawczym.

Zakład nasz przygotowując się do ewentualnego uczestnictwa w wspomnianym programie rozpoczął wstępne prace metodyczne dla zebrania doświadczenia i lepszego poznania zagadnienia.

Pierwszy etap, którego wyniki są tu przedstawione nie wnosi nic nowego do samego zagadnienia. Jest powtórzeniem takich samych prac wykonywanych w ZSRR, RFN i USA. Korzyści jakie przyniósł to: dostarczenie materiału analitycznego dla gleb Polski, czego dotychczas nie mieliśmy i nabycie pewnego doświadczenia warsztatowego.

Pomiary spektrofotometryczne dla wybranych gleb wykonywaliśmy już nieco wcześniej. Wykonane one były według postępowania przyjętego w teorii barwy. Nie zatrzymujemy się nad tym dłużej, ponieważ były to próby powiązania barwy map glebowych z barwami gleb i porównanie różnych sposobów wyrażania barwy gleby.
W pomiarach obecnych zmierzamy do poznania odpowiedzi spektralnej poszczególnych jednostek glebowych występujących na obszarze Polski. Ponieważ wyniki tych pomiarów chcemy wykorzystać również do charakterystyki barwy gleby interesuje nas nie tylko poziom próchniczy gleby, ale i pozostałe poziomy genetyczne.

Dane analityczne o składzie chemicznym gleb oraz ich podstawowych właściwościach fizycznych i chemicznych pozwolą przy dostołecznie dużej ilości prób na szukanie związków między właściwością gleby a ich charakterystyką spektrofotometryczną.

W chwili obecnej przedstawiamy wyniki pomiarów dla następujących gleb:

1. gleba płowa właściwa wytworzona z pyłu wodnego pochodzenia na glinie zwalowej: Mory k/Warszawy poziomy genetyczne A_1, A_2, B_1.

2. bielica żelazisto-próchniczna wytworzona z piasku wodno łodowcowego /leśną/ Chorzele, poziomy genetyczne: A_2, B_1, B_2, C.

3. gleba brunatna wylugowana z gliny lekkiej pylastej plejstoceńskiego tarasu Wisły; Palimry k/Warszawy, poziomy genetyczne A_1, B_1.

4. Czarna ziemia zdegradowana wytworzona z piasków stożków napływowych na glinie zwalowej; Jaktorów k/Crożdżiska Mazowieckiego, poziomy genetyczne: A_1, A_1C.

5. Czarna ziemia właściwa wytworzona z ilu Pomorze k/Ciechanowa poziomy genetyczne: A_1, A_1C, C.

6. Czarnoziem leśno-stepowy zdegradowany, wytworzony z lesu; Telatyn, hrubieszowskie, poziomy genetyczne: A_1, A_1C, A_1C, C.

7. Porównawczo poziom A_1 czarnoziemu stopowego właściwego; Karlino k/Ułanowska - ZSSRR.

Razem 6 jednostek glebowych i 18 prób. Zawartość próchnicy w poziomach A_1 wahała się od 1% do 3,5%.

Próbki gleb powietrznie suchych zostały roztałe i przesiane przez sito o średnicy 1 mm. Pomiaru dokonano spektrofotometrem C. Zeiss-Jena, stosując przystawkę pomiarową dla światła odbitego Rdb/0 z kulą Ulbrichta.

Jako wzorca bieli użyto płytki ze sproszkowanego siarczanu ba-

r. Próbka umieszczona była w specjalnie przygotowanym pojemniku o wyrównanej powierzchni. Mierzone powierzchnia próbki około 450 mm2, zakres pomiaru od 380 nm do 720 nm, ze zmianą fotokomórki przy 610 nm. Różnice czułości fotokomórek zerowano przy pomocy czarnej płytki porównawczej. W celu określenia błędu instrumentu wykonano
dziesięciokrotny pomiar próbki /bez naruszania powierzchni gleby/.
Średni błąd pomiaru współczynnika odbicia dla określonej długości fali wynosi ± 0,6%. Stwierdzono, że zmiana struktury /przemieszania tej samej próbki w pojemniku/ powoduje pewne zmiany współczynnika odbicia.

Na podstawie sześciokrotnego pomiaru ze zmieszaniem próbki za każdym razem stwierdzono, że średni błąd dla jednej długości fali wynosi ± 0,9% /błąd ten zawiera w sobie również błąd pomiaru o którym wspomniano wyżej/.

W celu analizy zdolności odbicia spektralnego typowych gleb Polski wykonano pomiar co 10 nm dwukrotnie, zmieniając powierzchnię gleby przed drugim pomiarem. Do dalszych obliczeń posłużono się średnią arytmetyczną. Z wartości tych można wykreślić krzywe spektrofotometryczne prostym sposobem.

Wartości uzyskane z pomiarów spektrofotometrycznych zostały również przedstawione według międzynarodowego liczbowego systemu wyróżnania barw XYZ.

Przy obliczeniach na maszynie cyfrowej "Odra 1204", posłużono się metodą rzędnych wybranych dla oznaczenia składowych trójchromatycznych XYZ według wzorów znanych w teorii barwy, których te wzory nie będziemy tu przytaczać.

W rezultacie uzyskaliśmy składowe trójchromatyczne pozwalające na jednoznaczne określenie barwy w przyjętym systemie międzynarodowym. Z wartości tych możliwe jest również przejście na współrzędne przyjęte w systemie Munsella i na określenie barwy według atlasu Munsella.

Jesteśmy w trakcie przygotowania programu do tych obliczeń, nie można więc porównać wizualnego określenia barwy poszczególnych prób w systemie Munsella, ze słownym określeniem barwy otrzymanym na podstawie obliczeń. Nie próbujemy też przeprowadzić analizy otrzymanych wyników z punktu widzenia zależności od różnych właściwości gleby. Potwierdza się ogólne znana zależność, że zdolność odbicia maleje w miarę zwiększania się próchniczości gleby, jak też w miarę zwiększania się stosunku kwasa do kwasów jonowych do fulowych.

Przedmiotem następnych badań będą pozostałe jednostki glebowe obszaru Polski. Zamiaramy uwzględnić zmiany wilgotności gleby, zmiany struktury powierzchni gleby, przejście do dłuższych zakresów długości fali i wyjście z pomiarami w polu.
Rys. 1. Krzywe spektrofotometryczne niektórych gleb Polski

<table>
<thead>
<tr>
<th>Gląb głowy</th>
<th>Mary A1,1</th>
<th>Mary A1,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biloża</td>
<td>Czarny A1,3</td>
<td>Czarny A1,4</td>
</tr>
<tr>
<td>Brunnella</td>
<td>Płynny A1,3</td>
<td>Płynny A1,4</td>
</tr>
<tr>
<td>Czarna Ziemia</td>
<td>Płynny A1,4</td>
<td>Płynny A1,5</td>
</tr>
<tr>
<td>Czarna Ziemia</td>
<td>Płynny A1,5</td>
<td>Płynny A1,6</td>
</tr>
<tr>
<td>Czarna Ziemia</td>
<td>Płynny A1,6</td>
<td>Płynny A1,7</td>
</tr>
<tr>
<td>Czarna Ziemia</td>
<td>Płynny A1,7</td>
<td>Płynny A1,8</td>
</tr>
</tbody>
</table>

Fig. 1. Spectrophotometric curves for some soils in Poland

Rys. 2. Krzywe spektrofotometryczne niektórych gleb Polski poziomów próchniczych

<table>
<thead>
<tr>
<th>Gląb głowy</th>
<th>Mary A1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biloża</td>
<td>Czarny A1,3</td>
</tr>
<tr>
<td>Brunnella</td>
<td>Płynny A1,3</td>
</tr>
<tr>
<td>Czarna Ziemia</td>
<td>Płynny A1,4</td>
</tr>
<tr>
<td>Czarna Ziemia</td>
<td>Płynny A1,5</td>
</tr>
<tr>
<td>Czarna Ziemia</td>
<td>Płynny A1,6</td>
</tr>
<tr>
<td>Czarna Ziemia</td>
<td>Płynny A1,7</td>
</tr>
</tbody>
</table>

Fig. 2. Spectrophotometric curves of levels of humus for some soils in Poland.
<table>
<thead>
<tr>
<th>Definicja gleby</th>
<th>Miejscowość</th>
<th>Poziom gene-</th>
<th>Zaw. próchn.</th>
<th>Barwa wg Munsella</th>
<th>Składowe trójchroma-</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>tyczny</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Płowa</td>
<td>Mory</td>
<td>A_1</td>
<td>1.78</td>
<td>5 Y 6/3</td>
<td>22.89</td>
<td>23.04</td>
<td>20.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A_3</td>
<td>0.41</td>
<td>5 Y 7/3</td>
<td>34.76</td>
<td>35.79</td>
<td>29.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B_1</td>
<td>0.40</td>
<td>10 YR 6/6</td>
<td>29.43</td>
<td>29.56</td>
<td>18.99</td>
<td></td>
</tr>
<tr>
<td>Bielica</td>
<td>Chorzele</td>
<td>A_2</td>
<td>0.97</td>
<td>2.5Y 7/2</td>
<td>27.49</td>
<td>27.96</td>
<td>29.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B_h</td>
<td>6.08</td>
<td>10 Y 5/4</td>
<td>17.73</td>
<td>17.82</td>
<td>15.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B_s</td>
<td>1.78</td>
<td>10YR 5/4</td>
<td>19.57</td>
<td>19.50</td>
<td>17.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>0.31</td>
<td>10YR 6/3</td>
<td>25.72</td>
<td>25.77</td>
<td>23.01</td>
<td></td>
</tr>
<tr>
<td>Brunatna</td>
<td>Palmiry</td>
<td>A_1</td>
<td>1.78</td>
<td>10YR 5/4</td>
<td>20.05</td>
<td>20.25</td>
<td>15.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/B/</td>
<td>0.34</td>
<td>10YR 5/6</td>
<td>21.60</td>
<td>20.78</td>
<td>12.22</td>
<td></td>
</tr>
<tr>
<td>Czarna ziemia</td>
<td>Jaktorów</td>
<td>A_1</td>
<td>2.52</td>
<td>5 Y 4/1</td>
<td>14.75</td>
<td>14.23</td>
<td>14.13</td>
<td></td>
</tr>
<tr>
<td>Czarna ziemia</td>
<td></td>
<td>A_1C</td>
<td>0.84</td>
<td>2.5Y 5/2</td>
<td>17.81</td>
<td>17.42</td>
<td>16.92</td>
<td></td>
</tr>
<tr>
<td>Czarna ziemia</td>
<td>Pomorze</td>
<td>A_1</td>
<td>3.28</td>
<td>5 Y 4/1</td>
<td>11.49</td>
<td>11.32</td>
<td>11.83</td>
<td></td>
</tr>
<tr>
<td>Czarna ziemia</td>
<td></td>
<td>A_1C</td>
<td>0.81</td>
<td>5 Y 6/3</td>
<td>26.74</td>
<td>27.62</td>
<td>23.76</td>
<td></td>
</tr>
<tr>
<td>Czarnozim</td>
<td>Telałyn</td>
<td>A_1</td>
<td>3.78</td>
<td>5 Y 4/1</td>
<td>11.21</td>
<td>10.98</td>
<td>10.79</td>
<td></td>
</tr>
<tr>
<td>(leśno-stepowy)</td>
<td></td>
<td>A_1C</td>
<td>3.56</td>
<td>10YR 3/2</td>
<td>26.35</td>
<td>26.52</td>
<td>10.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A_1C</td>
<td>2.24</td>
<td>10YR 4/2</td>
<td>9.59</td>
<td>9.43</td>
<td>9.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>0.43</td>
<td>10YR 6/6</td>
<td>10.22</td>
<td>9.29</td>
<td>9.23</td>
<td></td>
</tr>
<tr>
<td>Czarnozim</td>
<td>Karlino</td>
<td>A_1</td>
<td>3.70</td>
<td>5 Y 3/1</td>
<td>9.60</td>
<td>9.49</td>
<td>10.64</td>
<td></td>
</tr>
<tr>
<td>(stepowy)</td>
<td>ZSSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPECTROPHOTOMETRIC CURVES FOR SOME SOILS IN POLAND

Summary

The measuring was carried out in laboratory conditions using Zeiss, Jena spectrophotometer with regards to the coefficients of spectral intensity within the interval of 380 to 720 nm for the following soils: gray brown podzolic, brown podzol, black earth, chernozems.

The curves were plotted and also the three-chromatic XYZ components were calculated according to the international system for colours.

The characteristic of soils as well as the results of measurements are shown in the table and on the diagram. The correlation has been found between the contents of humus in a soil and the value of its spectral intensity coefficient.