Objectives. The paper presents application of a combination of remote sensing and plant physiology methods for vegetation communities recognition. The research is based on large scale, multispectral photos made from ground level (in red and infrared portion of electromagnetic spectrum), field radiometric measurements in channels: 300-600 nm, 600-700 nm, 700-800 nm and 800-1100 nm) and laboratory chlorophyll analysis (using photospectrometer).

Characteristics of test sites. The research was conducted on a slope of Beskid, located in the High Tatra Mountains, and was based on an in-depth analysis of three Alpine species: Juncus tritici, Luzula spadiacea and Calamagrostis villosa, which compose common and prevalent Alpine communities: Oreochoilus disticha-Juncetum tritici, Luzuletum spadiaceae and Calamagrostetum villosae, respectively. Juncus tritici is a High Mountain rush, a prevalent and most widespread component of Alpine meadows. It occurs on hard-rock slopes, ledges, scree, and snow-margins, forming almost or so variants of Oreochoilus disticha-Juncetum tritici community. Luzula spadiacea is a grass growing at concave-shaped slopes and gullies characterised by a long-lasting snow cover. Calamagrostis villosa composes one of the most typical tall-herb communities and occupies well-established scree. All the researched communities occur on granite and acidic slope deposits and moraines in Alpine zone (above 1650 m a.s.l.).

Results. Leaf pigments. The qualitative and quantitative analysis of pigments showed significant differences between the studied species. Calamagrostis villosae has the highest total content of chlorophyll per 1 g of fresh vegetation matter (2.1-3.4 mg), Luzula spadiacea contains 1.6-2.5 mg of chlorophyll, while Juncus tritici — only 0.9-0.9 mg. The researched species have also different ratio of chlorophyll a to chlorophyll b. Low values of this ratio have been observed for Luzula spadiacea (1.9-4.2) and Calamagrostis villosae (2.1-3.4), while comparatively high for Juncus tritici (5.5-8.6). Additionally Juncus tritici contains high amount of carotenoids in comparison to the total chlorophyll content: (ratio of carotenoids to chlorophyll ranges between 1.9-3.1), while the ratio for Calamagrostis villosae and Luzula spadiacea ranges between 3.6-5.6 and 3.5-5.3, respectively. Chlorophyll b plays a secondary function in photosynthesis, as it supports chlorophyll a in light absorption. Hence its amount in high Alpine species, which rather suffer from the excess of solar radiation, is low. This can be observed on the example of the tree researched species. In leaves of Luzuletum spadiaceae and Calamagrostetum villosae chlorophyll b reaches 25% of the total amount of leaf pigments, while in leaves of Juncus tritici it amounts only to 10%. Carotenoids play the opposite role in the photosynthesis process; they protect chlorophyll from photodestruction and thylakoid membranes from destruction resulting from excess sun radiation. Hence, high quantity of carotenoids can be found in Juncus tritici, which is one of the main components of high Alpine meadows and occupies the highest positions on slopes, where sun radiation intensity is very high. Mean percentage of carotenoids in the analysed Juncus tritici samples reached 28%, while in Luzula spadiacea and Calamagrostis villosae samples — only 17%. Analysis of carotenoid absorption spectrum shows a maximum in the blue portion of the electromagnetic spectrum, with a maximum shifted towards longer waves in comparison with chlorophyll absorption in this part of electromagnetic spectrum. Carotenoid absorption spectrum lacks also a peak in a red portion of electromagnetic spectrum which is characteristic for chlorophyll absorption spectrum. As differentiation of leaf pigments present in the researched plant species is significant, it should influence light absorption in blue and red portions of electromagnetic spectrum.

Field spectrometer measurements. Radiometric measurements confirmed the results of laboratory analysis: Juncus tritici has lower absorption in the red band, than the other researched species.

Analysis of multispectral photographs. Supervised classification was carried out on composite images: infrared and red channels of the ground photos. It produced good results and allowed for recognition of the following communities: Oreochoilus disticha-Juncetum tritici, Luzuletum spadiaceae, Calamagrostetum villosae, Rhozocarpetalia (scree communities), pioneer mossy communities in humid gullies, Poaonea-Unigeretum (anthropogenic communities developed along tourist paths) and Vaccinietum myrtilli, Empetro-Vaccinietum and Pinetum mughl (dwarf-
Cel i zakres badań

Roślinność jest doskonalem wskaźnikiem pozostałości komponentów środowiska, toteż w środowiskach mało zaburzonych przez człowieka, takich jak wysokie góry, dobre rozpoznanie roślinności może być szczegółowe pomocne w badaniach budowy geologicznej, rzeczby, gleby, wilgotności podłoża i mikroklimatu. Jednocześnie, zarówno komponenty biotyczne jak i abiotyczne w środowiskach wysokoogórskich wykazują ogromną wrażliwość i dynamicznie. Fizjologiczny stres roślin, wkraczanie nowych roślin i zbiorowisk roślinnych na nowe siedliska, obniżanie się i podwyższanie granic zasięgów roślin i zbiorowisk niejednokrotnie są wynikiem działalności człowieka. Rozpoznanie i monitoring roślinności jest więc niezbędnym elementem ochrony i zarządzania wrażliwych środowisk wysokoogórskich.

Kartowanie roślinności polskiej części Tatr rozpoczął to już w latach 60. Mimo iż rozpoznanie roślin, zbiorowisk roślinnych i stanowisk gatunków jest bardzo dobre, tylko niektóre z dolin mają pokrycie mapami roślinności w skalach co najmniej 1:20000. Głównym powodem wolnego postępu kartowania roślinności w Tatrach jest krótki okres wegetacyjny, zmienna pogoda, niedostępność wielu stoków oraz ogromną zmienność i zróżnicowanie roślinności.

Metody

Charakterystyka badanych zbiorowisk roślinnych

Zbiorowiska roślinne różnych formacji roślinnych (np. ląki, zarośla, lasy), są stosunkowo łatwe do interpretacji na zdjęciach lotniczych i satelitarnych. W prepreszonej pracy analiza objętych zostało więc trzy typowe i powszechne w Tatrach Wysokie zbiorowiska trawiaste piętra alpejskiego: Oreochoilo distichae-Juncetum trifidi, Luzuletum spadicceae i Calamagrostietum villosae, reprezentowane przez następujące gatunki alpejskie: Juncus trifidus, Luzula spadicea i Calamagrostis villosa, które są głównymi składnikami badanych zbiorowisk. Juncus trifidus (sit skutna) jest powszechnym i dominującym gatunkiem muraw alpejskich. Występuje na stokach i polkach skalnych, piargach i morenach, tworząc kilkanaście podzespołów zbiorowiska Oreochoilo distichae-Juncetum trifidi. Występuje na stanowiskach na najwyższych szczytach Tatr. Luzula spadicea (kosmatka brunatna) jest gatunkiem tworzącym powszechne, trawiaste zbiorowisko wyleżyskowe Luzuletum spadiceae, porastającym wklęsle partie stoków, kotły, dna dolin i rozległych zlebów, z długo zalegającą pokrywą śnieżną, Calamagrostis villosa (trzcinnik owłosiony) tworzy jedno z najbardziej typowych zbiorowisk zieleni roślinnych porastające utrwalone piargi.

Wszystkie badane zbiorowiska występują na skalach granitowych oraz kwaszych i obojętnych utworach stokowych i morenach w piętrze alpejskim (powyżej 1850 m n.p.m.).

Zbiorowiska roślinne badane były na kilkunastu stokach; w tym artykule przedstawione zostały jedynie wyniki szczegółowej analizy gatunków i zbiorowisk roślinnych na stokach Beskidu. Analiza ta objęła: terenowe pomiary radiometryczne, laboratoryjną analizę zawartości barwników assimilacyjnych oraz cyfrowe przetwarzanie zdjęć wykonanych w czerwonym i podczerwonym zakresie spektrum elektromagnetycznego. Badania te renowe wykonano w drugiej połowie sierpnia 1998 roku, w okresie największego wigoru i zróżnicowania roślinności.
Laboratoryjne pomiary zawartości barwników fotosyntetycznych

Z 51 pól testowych pobrano kilogramowe próbki badanych gatunków. Każdy z gatunków reprezentowany jest przez 17 próbek w trzech powtórzeniach (prób z powtórzeń zebrano w obrębie płatu tego samego zbiorowiska roślinnego, w odległości kilku metrów). Próbki te przewieziono następnie do laboratorium, gdzie wykonano spektrofotometryczne oznaczenie zawartości barwników fotosyntetycznych: chlorofilu a i b oraz karoteno-ślubów (po abstrakcji barwników w acetonie). Dla każdej z prób wykonano po dwa pomiary spektrofotometryczne.

Terenowe pomiary radiometryczne

Pomiary radiometryczne wykonano radiometrem polowym SP-1, operującym w tych samych zakresach spektralnych co radiometr Landsat MSS (500–600 nm, 600–700 nm, 700–800 nm i 800–1100 nm). W każdym z pól testowych wykonano 20 pomiarów. Dodatkowo, oprócz badanych zbiorowisk roślinnych, dla porówna-
nia zmierzone odbicie spektralne dla plągów, najchętniej skal i kosodrzewiny.

Wykonanie zdjęć naziemnych

Zdjęcie stoku Beskidu wykonano z Uhrocia Kasprorego, dwoma aparatomi umocowanymi na ramie statywu, co umożliwiło jednoczesne wykonanie zdjęć i ujęcia tego samego kadrę. Wykonano zdjęcia w podczerwieni i w czerwonym zakresie spektrum elektromagnetycznego oraz zdjęcia czarno-białe i kolorowe.

Zdjęcia w podczerwieni wykonano na filmie KODAK Ektachrome Infrared High Speed, uczynionym na bliski ultrafolet, widzialny zakres spektrum elektromagnetycznego oraz bliską podczerwieni (do 0,9 m, z maksimum uczenia filmu przypadającym na fale o długości 0,75–0,84 μm). W celu wyeliminowania ultrafioletu i zakresu widzialnego zastosowano gęsty czerwony filtr, który przepuszcza fale o długości większej od 690 nm, z maksimum transmitancji (około 73%) fal o długości 750 nm.

Zdjęcia w czerwonym zakresie spektrum wykonano na panchromatycznych filmach Kodak TMAX 400, uczynionych na światło w całym zakresie. Aby wyeliminować światło niebieskie i zielenie zastosowano filtr czerwony, transmitujący światło o długości powyżej 595 nm, z maksimum transmitancji dla fal dłuższych od 645 nm.

Cyfrowe przetwarzanie zdjęć

Wywołane zdjęcia zeskanowano z wysokością rozdzielczością 10 mikronów (2540 dpi). Zdjęcia te nie mają charakteru kartometrycznego: na przednim planie piskel reprezentuje ok. 1 cm w terenie, na tymnym zaś — ok. 10 cm. Mimo niejednolitej skali na całym zdjęciu, jego rozdzielczość gwarantuje, że jeden piskel obejmuje nie więcej niż jedną kępkę badanych zbiorowisk trawiastych. Znajduje się więc, że wielkość piskela nie ma wpływu na odbicie spektralne badanych obiektów.

Wysoka rozdzielczość pozwoliła na zarejestrowanie zdjęć wykonanych w różnych zakresach spektrum do wspólnego układu współrzędnych, co pozwoliło na uzyskanie standardowej kompozycji w barwach pierwotnych (ryc. 1). Rozpoznanie i analizę badanych zbiorowisk przeprowadzono na podstawie szczegółowej klasyfikacji nadzorowanej, w oparciu o mapę zbiorowisk roślinnych w skali 1:1000, zawierającą ok. 20 zespołów i podzespół roślinnych i kilkanaście kompleksów tych zbiorowisk.

Wyniki

Barwniki fotosyntetyczne

Jakościowa i ilościowa analiza barwników zawartych w liściach badanych gatunków wykazała znaczne różnice pomiędzy badanymi gatunkami. Największą sumaryczną zawartość chlorofillu na 1 g świeżej masy wynosił trzcinnik owlsonowy (Calamagrostis villosae): 2,1–3,4 mg, a następnie kosmatka brunatna (Luzula spadiacea): 1,6–2,5 mg i sit skucina (Juncus trifidus) — tylko 0,5–0,9 mg.

Waży, z punktu widzenia funkcji życiowej roślin, stosunek chlorofillu α do chlorofillu β oraz stosunek sumarycznej zawartości chlorofillu do karotenoidów, jest również zróżnicowany dla badanych gatunków. Niskie wartości stosunku chlorofillu α do chlorofillu β zaobserwowano dla kosmatki brunatnej (1,9–4,2) i dla trzcinnika owłosionego (2,1–3,4), wysokie zaś dla sit skucina (5,5–8,6). Sit skucina zawiera ponadto stosunkowo dużo karotenoidów. Stosunek chlorofillu do karotenoidów dla sit skucina zawiera się w przedziale 1,9–3,1, podczas gdy dla trzcinnika owłosionego i kosmatki brunatnej, odpowiednio 3,6–5,6 i 3,5–5,3 (ryc. 2, tab. 1).

Chlorofil β pełni drugorzędną rolę w procesie fotosyntetycznym i ma za zadanie wspieranie chlorofillu α w-absorpcji światła. Dlatego jego zawartość w gatunkach alpejskich, które raczej cierpią na nadmiar promieniowania słonecznego niż na jego niedobór, jest niska. Można to zaobserwować na przykładzie badanych gatunków: liście Luzula spadiacea i Calamagrostis villosae zawierają aż 25% chlorofillu β, w sumarycznej zawartości barwników fotosyntetycznych, natomiast sit skucina, rosnące na
Tabela 1.
Średnia zawartość barwników fotosyntetycznych

<table>
<thead>
<tr>
<th>Gatunek</th>
<th>Juncus trifidus</th>
<th>Luzula spadicea</th>
<th>Calamagrostis villosae</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg chlorofilu a w 1 g masy</td>
<td>661</td>
<td>1365</td>
<td>1946</td>
</tr>
<tr>
<td>% chlorofilu a</td>
<td>62</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>mg chlorofilu b w 1 g masy</td>
<td>104</td>
<td>599</td>
<td>812</td>
</tr>
<tr>
<td>% chlorofilu b</td>
<td>10</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>mg karotenoidów w 1 g masy</td>
<td>297</td>
<td>407</td>
<td>579</td>
</tr>
<tr>
<td>% karotenoidów</td>
<td>28</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>chl. a/chl. b</td>
<td>6.64</td>
<td>2.53</td>
<td>2.51</td>
</tr>
<tr>
<td>chlorofil/karotenoidy</td>
<td>2.63</td>
<td>4.34</td>
<td>4.75</td>
</tr>
</tbody>
</table>

Ryc. 3. Widmo absorpcyjne fotosyntetycznie czynnych barwników

Fig. 3. Absorption of photosynthetising pigments

najwyższych szczytów i półkach skalnych, i przystosowywany do wysokiego natężenia promieniowania słonecznego, zawiera jedynie 10% wspomagającego fotosynteze chlorofilu b.

Karotenoidy natomiast chronią chlorofil przed fotoksydacją, a membrany tylakoidowe przed destrukcją w wyniku nadmiernego promieniowania słonecznego. Stąd też duża zawartość karotenoidów w siklu skućnica (średnio 28%), który jest głównym składnikiem ląk alpejskich i zajmuje najwyższe położenia na stokach, gdzie natężenie słońca jest największe. Próbki kosmatki brunatnej (*Luzula spadicea*) i trzcinnika owłosionego (*Calamagrostis villosae*) zawierają jedynie po ok. 17% karotenoidów.

Analiza spektrum absorpcyjnego chlorofilu b w stosunku do spektrum chlorofilu a wykazuje niewielkie przesunięcie krzywej absorpcji w kierunku fal dłuższych (ryc. 3). Przy zastosowaniu filmów uczłonionych na wąski zakres promieniowania o długości ok. 470 nm, można by więc rozpoznać gatunki różniące się zawartością chlorofilu b. Ze względu jednak na silne rozpraszanie światła niebieskiego, zakres ten rzadko jest używany w teledetcej. Wyraźnie inna krzywa absorpcji charakteryzuje się natomiast karotenoidy, które absorbują światło niebieskie, z maksimum przesuniętym w kierunku fal dłuższych, w porównaniu do absorpcji chlorofilu, natomiast, w przeciwieństwie do chlorofilu, nie absorbują światła czerwonego. Wysokie zróżnicowanie zawartości karotenoidów w badanych gatunkach roślin powinno więc mieć istotny wpływ na absorpcję światła. Siat skućnicy, zawierająca stosunkowo dużo karotenoidów powinien wykazywać podwyższone odbicie światła w zakresie czerwonym w stosunku do pozostałych dwóch badanych gatunków.
Ryc. 5. Wyniki klasyfikacji nadzorowanej

Fig. 5. Results of supervised classification
Pomiary radiometryczne

Hipoteza postawiona w wyniku analizy zawartości barwników fotosyntetycznych została zweryfikowana przez pomiary radiometryczne. Tak jak oczekiwano, sit skucina, który zawiera stosunkowo mało barwników fotosyntetycznych, charakteryzuje się wyższym odbiciem promieniowania we wszystkich zakresach światła (ryc. 4). Ponadto, wyraźnie wzrasta jego odbicie w zakresie czerwonym, co jest wynikiem wysokiej zawartości karotenoidów, które nie absorbują promieniowania w tym zakresie. Trzcinnik owłosiony, który zawiera ok. 1,5 razy więcej barwników w 1 g masy niż kosmatka brunatna wykazuje większe pochłanianie w fotosyntetycznie czynnym czerwonym zakresie światła i (minimalnie) mniejsze w nieczynnym fotosyntetycznym zakresie zielonym.

Badane gatunki różnią się ponadto odbiciem w podczerwonym zakresie promieniowania elektromagnetycznego. W zakresie promieniowania widzialnego odbicie zależy od zawartości barwników fotosyntetycznie czynnych. W podczerwieni natomiast jest ono zależne od budowy liści: liczbę i wielkość przestrzeni międzykomórkowych, zajętych przez gazy nasycone parą wodną. Badania z zakresu fiziologii roślin, pozwalające na uzasadnienie zróżnicowanie odbicia promieniowania w zakresie podczerwonym (np. pomiar transpiracji badanych gatunków) zostaną przeprowadzone w dalszej części pracy.

Cyfrowe przetwarzanie zdjęć naziemnych

Klasifikacja nadzorowana

Klasifikacja nadzorowana zdjęć wykonanych w zakresie czerwonym i w podczerwieni dała dobre rezultaty i pozwoliła na rozpoznanie następujących zbiorowisk roślinnych: Oreochloa distichaea-Juncetum trifidi, Luzuletum spadicaceae, Calamagrostis villosae, Rhizocarpeta (zbiorowisko porostów naskalnych), pionierskich zbiorowisk mszty porastających wilgotne żleby, Pogonato-Oligotrichetum (antropogenicznych zbiorowisk wykształconych wzdłuż ścieżek turystycznych), Vaccinetum myrtillii, Empetro-Vaccinetum (zbiorowisk krzewiowych) oraz Pinetum mughi (zbiorowiska kosodrzewiny). W wyniku klasifikacji skartowane również podzespół zbiorowiska z sitem skucina: Oreochloa distichaea-Juncetum trifidi herbaceae (z wierzba zielna, występujące na stokach z dużą zalegającą pokrywą ścieżną), Oreochloa distichaea-Juncetum trifidi sphagnetosum (mszyste, na wilgotnym podłożu), Oreochloa distichaea-Juncetum trifidi caricetosum semprevirentis (powyświetle murowy subalpejski).

Ryciny 6 i 7 przedstawiają histogramy sygnatur dla pól treningowych trzech badanych zbiorowisk roślinnych: Luzuletum spadicaceae, Oreochloa distichaea-Juncetum trifidi typicum i Oreochloa distichaea-Juncetum trifidi cetarietosum. Histogramy te potwierdzają wyniki pomiarów radiometrycznych i laboratoryjnej analizy barwników fotosyntetycznych: zbiorowiska zdolowane przez alpejski gatunek Juncus trifidi mają podwyższone odbicie promieniowania elektromagnetycznego w zakresie czerwonym (ryc. 6).

W zakresie promieniowania czerwonego niemożliwe jest rozróżnienie podzespółów z udziałem sita skucina (ryc. 6 - histogramy dla tych podzespółów nakładają się). W podczerwieni natomiast, podzespół te mają inne wartości odbicia, co pozwala na ich łatwe rozróżnienie (ryc. 7 - histogramy są rozłączne).

Oszacowanie dokładności klasifikacji

Ze względu na fakt, że zdjęcie nie zostało zarejestrowane do prostokątnego układu współrzędnym (zbyt duża strata informacji przy rzucie stoku na powierzchnię płaską), oszacowanie dokładności klasifikacji przez porównanie z istniejącą mapą roślinności nie było możliwe. Przeprowadzono więc statystyczne oszacowanie
Podsumowanie

Ponieważ badane zbiorowiska roślinne są dominujące w krajobrazie Tatry Wysokich, otrzymane wyniki są jednoznaczne z pozytywną oceną metod teledetekcji w badaniach roślinności wysokogórskiej w skalach 1:10 000 i większych. W dalszej części pracy wykonana zostanie ekstrapolacja zaprezentowanych wyników na obszarach Tatr Wysokich, na podstawie zdjęcia satelitarne Landsat TM. Mimo dużej wielkości piksela oczekuje się, że dane z badań wielkoskalowych umożliwią rozpoznanie wielkopowierzchniowych płatów badanych zbiorowisk roślinnych. W przyszłości natomiast, satelity nowej generacji, o standardowej rozdzielczości spektralnej (kanaly: zielony, czerwony i podczerwony), ale o wysokiej rozdzielczości terenowej (2–5 m), pozwolą na rozpoznanie wysokogórskich zbiorowisk roślinnych z wysoką dokładnością.

Literatura

Mgr Anna Jakomulska ukończyła studia magisterskie na Wydziale Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego, w Zakładzie Geoekopologii. Obecnie jest na IV roku Studium Doktoranckiego WGiSR, w Zakładzie Teledetekcji Środowiska. Interesuje się nowoczesnymi technikami przetwarzania obrazów oraz ich zastosowaniem w badaniach roślinności, a w szczególności w wielkoskalowym kartowaniu roślinności wysokogórskiej.