Jan Jasiński
/Marszawa/

MOŻLIWOŚCI ZASTOSOWANIA ZJAWISKA LANDA
W FOTOINTERPRETACJI

Wiele gałęzi stosunkowo młodej nauki jaką jest fotointerpretacja mogło powstać dzięki fotografii barwnej; chodzi tu o taki przypadki, gdzie zasadniczym czynnikiem pomiarowym jest kolor fotografowanego obiektu.

Pomimo ciągłego ulepszania wielowarstwowych materiałów barwnych jakość obrazu często daleka jest od doskonalości. Skomplikowana obróbka, brak odpowiednich materiałów na rynku spowodowany nieregularnymi dostawami z importu, wysoka cena, duże nakłady inwestycyjne na sprzęt a przede wszystkim pracochłonność, zniechęcają do posługiwania się fotografą barwną.

Dlatego też warto zwrócić uwagę na pewne odkrycie, które rzuca nowe światło na dotychczasową teorię barwej i wskazuje na odmienny sposób powstawania obrazów barwnych. Zasadniczą zaletą zjawiska Landa jest to, że posługuje się do wywoływania obrazów barwnych tradycyjnymi materiałami chlorowcosrebowymi, które są produkowane obecnie w dziesiątkach odmian, a technika ich obróbki jest już opanowana w bardzo wysokim stopniu.

W początkach fotografii barwnej w połowie ubiegłego stulecia również posługiwano się materiałami sre -

Później uczeni stwierdzili, że przy pomocy trzech barw – czerwonej, zielonej i niebieskiej, które noszą nazwę zasadniczych barw dopełniających, można otrzymać każdy żądany kolor. Od czasu odkrycia Maxwella doświad- czenie to było powtarzanym setki razy i do chwili obec- nej w ten sposób wykonuje się reprodukcje oryginałów barwnych na skalę przemysłową. Wykorzystując to zjawisko było budowanych wiele typów aparatów do fotogra- fii barwnej z potrójnym podziałem wiązki światła.

W 1955 r. Land pracując nad udoskonaleniem aparatu Polaroid zauważył, że do otrzymywania pełnowartościowego obrazu barwnego nie potrzeba wcale wyciągu niebieskie- go, przy czym wyciąg zielony jest rzucany na ekran bez filtru.

Tak więc w klasycznej fazie doświadczeń zjawisko Landa wygląda w ten sposób: wykonuje się na materiale panchromatycznym dwa wyciągi czarno-białe: jeden przez filtr czerwony, drugi przez filtr zielony. W większo- ści przypadków Land używał filtrów Kodaka /czerwony – Kodak Wratten filter No 24 i zielony No 58/. /rys.1 i 2/

Z tak otrzymanych dwóch negatywowych obrazów czas-
Rys. 1. Krzywa pochłaniania filtru
Kodak Wratten Filters № 24

Rys. 2. Krzywa pochłaniania filtru
Kodak Wratten Filters № 58
tkotych sporządza się diapozytywy i umieszcza w rzutnikach w ten sposób, aby kontury na ekranie pokryły się. Po zapaleniu światła w obu rzutnikach i umieszczaniu przed obiektywem rzutnika z wycięciem czerwonym tego samego filtra czerwonego, który był używany do robienia zdjęcia, na ekranie ukazuje się oraz w barwach naturalnych. Przed obiektywem rzutnika z wycięciem zielonym na umieszcza się żadnego filtra lecz zestaw dwóch filtrów polaryzacyjnych dla zrównania jasności obu wyciągów.

Jedynyatem kolor jaki został rzucony na ekran to czerwony, oraz białe światło jako mieszanina wszyskich barw – każde zależne od gęstości optycznej/przezroczystości/ obu diapozytywów. Jednakże oko patrząc na ekran widzi nie tylko oczekiwanie odcienie czerwieni i czerni /szarości/, ale pełnobarwny obraz. W każdym przypadku kolory widziane są identyczne z kolorami oryginalnymi przedmiotów fotografowanych, choć oko nigdy nie widziało oryginału. Jest to jeszcze jedna cecha wyróżniająca na plus obraz kolorowy powstający tę metodą w stosunku do obrazu na barwnych materiałach wielobarwnych, gdzie odcień barw znacznie się zmienia z warunkami otoczenia i oświetlenia.

W 1957 r. Land posunął się jeszcze dalej w swoich doświadczeniach i mocniej zachwiał klasyczną teorię o kolorach. Tym razem doświadczenie wyglądało w ten sposób: projektor z przezroczem czerwonym przesłał jak zwykle filtrem czerwonym, natomiast projektor z przezroczem zielonym przesłonił filtrem pomarańczowym. Na ekranie pojawił się znów obraz wielobarwny.

Po wielu doświadczeniach Land mógł stwierdzić, że
oko ludzkie widzi wtedy barwnie, gdy między bodźcami światłowymi tworzącymi obraz istnieje różnica przynajmniej 10 nm w długości fali świetlnej. W takich warunkach oko spostrzega wszelkie barwy bez względu na to, w którym zakresie fal widzialnych czynne są te dwa bodźce. Może to zatem być światło czerwone, zielone lub żółte, aby różnica dwóch fal budujących obraz była większa od 10 nm.

Jak wynika z doświadczeń, obraz barwny uzyskany sposobem Landa jest bardzo stabilny, to znaczy barwy nie zmieniają się gdy zmieniamy w dość znacznym zakresie kontrastowość poszczególnych wyciągów lub jasność lamp projekcyjnych.

Różnica w widzeniu kolorów przez poszczególnych obserwatorów polega jedynie na różnicach w odbieraniu barw poszczególnych oczu/wady wzroku/.

Z tych eksperymentów Land wyciągnął wniosek, że działanie oka przypomina odbiornik telewizyjny, który musi otrzymać przynajmniej dwa sygnały dla odtworzenia kolorowego obrazu, gdyż przy jednym sygnale obraz jest czarno-biały. Dla lepszego zbadania zjawiska Land zbudował przyrząd pod nazwą "podwójny monochromator", dzięki któremu mógł oświetlać każdy z diapozytów dowolnie regulowaną monochromatyczną wiązkę światła lub światłem białym. W przyrządzie tym obraz nie powstaje na ekranie jak to było opisane poprzednio, lecz w oku obserwatora. Do połączenia obu wiązek w jedną posłużyło lustro półprzepuszczalne.

Zasadniczą cechą tego zjawiska w klasycznym przykładzie opisanym wyżej jest to, że każde oko/może to być jedno oko/musi niezależnie widzieć obraz barwny utworzony z obu wyciągów/może on się tworzyć na e-
kranie, lustrze półprzeglanzymy czy w inny sposób. 

Nie można więc włożyć do stereoskopu, stereokompara- 
ratora itd., po jednym wycięciu wykonanym na dwóch koń- 
cach bazy /lub z tego samego punktu/, gdyż nie zoba- 
czymy obrazu barwnego, bo każde oko zobaczy niezależ- 
nie jedno zdjęcie. Gdybyśmy wykonali nalolet fotografie - 
trzymsmy ekspozując na przemian zdjęcia przez filtr czer- 
wony i zielony, to obraz barwny z takich zdjęć mogli - 
byśmy odtworzyć jedynie na ekranie i to tylko na posz- 
częgêncianych warstwicach zmieniając położenie ekranu. 

Do barwnego widzenia stereoskopowego metodą Landa 
trzeba mieć 4 wycięcia /diapozytywy/ po dwa na posz- 
częgenden końcach bazy /dwa na każde oko/. Gdy nie 
zależy nam na widzaniu przestrzennym wystarczą dwa wy- 
cięcia zrobione z jednego punktu drogą poszczególnych 
ekspozycji dla przedmiotów nieruchomych, lub kamerą z 
podziałem wiązki światła eventualnie kamerami sprzężo-
nymi dla przedmiotów poruszających się. Dla zdjęć przed-
miotów w ruchu, lub gdy aparat porusza się /zdjęcie 
lotnicze/ a zależy nam na przestrzennym zarejestrowa-
niu zjawiska metodą Landa, na każdym końcu bazy należy 
umieścić kamerę z podziałem wiązki światła lub kamery 
sprzężone.

W 1964 r. Land opatentował i udoskonalił jeszcze 
bardziej swoją metodę, przez co znacznie uprościł się 
sposób projekcji obrazów barwnych. Ostatecznym efek- 
tem jest tu diapozytyw barwny lub barwna odbitka na 
papierze analogiczna do powszechnie używanych diapo-
zytywów lub odbitek barwnych na materiałach wielowars-
twowych.

Istota metody wygląda następująco: W dalszym ciągu 
Land opiera się na dwóch wycięciach negatywnych, więc

Taki diapozytym lub odbitkę papierową można już używać w połączeniu z wszystkimi przyrządami stosowanymi w fotointerpretacji z myślą o wykorzystaniu zdjęć fotograficznych. Opisana metoda postępowania jest tylko jednym z kilku możliwych rozwiązań.

Jeszcze jedną zaletą obrazów barwnych wywoływały w oparciu o zjawisko Landa jest ich duża trwałość pod względem archiwalnym i stabilności kolorów, bo praktycznie biorąc materiały chlorowcosrebrowe są przy prawidłowej obróbce nieograniczenie trwałe.

Do opisanego wyżej zjawiska, o którym są już wzmianki i patenty od 1914 r. użyłem terminu "zjawisko Landa", gdyż Land wydobył je z zapomnienia, potraktowano...
wał naukowo i znacznie udoskonalił. Jednocześnie w polskiej literaturze brak terminu na powstawanie obrazów barwnych tą metodą.

Zjawisko Landa nie ma do tej pory ostatecznego wyjaśnienia naukowego. Przypuszcza się, że tworzenie się wrażeń barw polega tu prawdopodobnie na psychologicznym zjawisku indukcji przestrzennej, tj. na wytworzeniu złudzenia barw pod wpływem silnie kontrastujących barwnych pól bezpośrednio przylegających do obserwowanego pola.